La mobilità elettrica del futuro sarà senza nickel e cobalto
Contributo determinante dell’università di Pisa: presto potranno essere utilizzate batterie litio-aria meno inquinanti
[13 Giugno 2023]
Secondo lo studio “Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation”, pubblicato recentemente su Nature Chemistry da un team internazionale di ricercatori di cui di cui facevano parte Marco Lagnoni e Antonio Bertei del Dipartimento di ingegneria civile e industriale dell’università di Pisa, «Risolvere il problema della dipendenza da materiali critici come cobalto e nickel che oggi affligge la mobilità elettrica è possibile e la soluzione si chiama “Batteria Litio-Aria”».
Lagnoni e Bertei spiegano che «Le batterie litio-aria garantiscono un’alta densità di energia e in futuro potrebbero essere utilizzate nei veicoli elettrici rendendoli ancor più sostenibili dal punto di vista ambientale. Oggi, però, non hanno ancora raggiunto prestazioni adeguate ad un loro utilizzo pratico, in particolare per quanto riguarda la fase di carica. Un ostacolo, questo, che adesso, grazie ai risultati ottenuti assieme ai colleghi delle università di Oxford e Nottingham, potrà essere presto superato».
Il team di ricerca italo-britannico ha infatti scoperto perché gli attuali catalizzatori, chiamati mediatori redox e utilizzati per la ricarica delle batterie litio-aria, non riescono a garantire una velocità di carica elevata: «In particolare, la velocità massima di carica dipende dal potenziale elettrico del mediatore redox, ciò ne limita le prestazioni. D’altro canto, si è dimostrato che una forma di ossigeno molto reattiva, che si sviluppa durante la carica, non è responsabile del deterioramento dei materiali come si riteneva in precedenza».
Il contributo dato dall’università di Pisa a questa scoperta è fondamentale: Lagnoni e Bertei hanno sviluppato dei modelli numerici avanzati e unici nel loro genere, che hanno permesso di prevedere le prestazioni energetiche degli elettrodi simulando il processo di carica con mediatori redox. E questo ha evidenziato che «Esistono altri fenomeni, oltre alla cinetica di reazione, che possono rallentare ulteriormente la carica, i quali devono essere anch’essi affrontati per superare le attuali limitazioni ed ottimizzare la tecnologia».
Bertei ricorda che «Ci abbiamo messo quasi tre anni per finalizzare il lavoro, per non parlare di tutte le attività di ricerca pregresse che ci hanno permesso di essere pronti per studiare questo tipo di batterie. La buona ricerca di base richiede risorse, ma soprattutto tempo, impegno e ottime basi teoriche. Questo risultato dimostra come l’approccio dell’ingegneria chimica sia multidisciplinare, attuale e capace di contribuire alla soluzione delle sfide odierne, come quelle dell’accumulo di energia elettrica».
Lagnoni aggiunge: «Il progresso della ricerca scientifica oggi si basa su una combinazione di sforzi sperimentali e strumenti di modellazione avanzati. Nell’ambito delle scoperte scientifiche, la modellazione è, infatti, uno strumento indispensabile per accelerare il progresso e supportare l’interpretazione dei dati sperimentali. Lo sviluppo di modelli di alta qualità richiede, però, una rigorosa e qualificata base sperimentale oltre che teorica. Per questo, la coesione tra i gruppi di ricerca e il trasferimento di conoscenze sono elementi essenziali. Lavorando insieme, condividendo i rispettivi saperi, uniti da un forte spirito di determinazione, i ricercatori possono raggiungere risultati significativi e superare le sfide scientifiche più complesse».
I ricercatori sono convinti che i risultati ottenuti da questo studio. «Permetteranno di indirizzare la ricerca verso la creazione di nuove classi di mediatori redox e l’impiego di materiali diversi da quelli utilizzati finora.Una sfida difficile, certo, ma anche un’opportunità per esplorare nuove direzioni di ricerca verso una mobilità elettrica sempre più sostenibile».